January 1st, 2015

Technological singularity - Wikipedia, the free encyclopedia --Some Criticisms

Martin Ford in The Lights in the Tunnel: Automation, Accelerating Technology and the Economy of the Future[100] postulates a "technology paradox" in that before the singularity could occur most routine jobs in the economy would be automated, since this would require a level of technology inferior to that of the singularity. This would cause massive unemployment and plummeting consumer demand, which in turn would destroy the incentive to invest in the technologies that would be required to bring about the Singularity. Job displacement is increasingly no longer limited to work traditionally considered to be "routine."[101]

Jared Diamond, in Collapse: How Societies Choose to Fail or Succeed, argues that cultures self-limit when they exceed the sustainable carrying capacity of their environment, and the consumption of strategic resources (frequently timber, soils or water) creates a deleterious positive feedback loop that leads eventually to social collapse and technological retrogression.

Theodore Modis[102][103] and Jonathan Huebner[104] argue that the rate of technological innovation has not only ceased to rise, but is actually now declining (John Smart, however, criticizes Huebner's analysis[105]). Evidence for this decline is that the rise in computer clock rates is slowing, even while Moore's prediction of exponentially increasing circuit density continues to hold. This is due to excessive heat build-up from the chip, which cannot be dissipated quickly enough to prevent the chip from melting when operating at higher speeds. Advancements in speed may be possible in the future by virtue of more power-efficient CPU designs and multi-cell processors.[106] While Kurzweil used Modis' resources, and Modis' work was around accelerating change, Modis distanced himself from Kurzweil's thesis of a "technological singularity", claiming that it lacks scientific rigor.[103]

Others[who?] propose that other "singularities" can be found through analysis of trends in world population, world gross domestic product, and other indices. Andrey Korotayev and others argue that historical hyperbolic growth curves can be attributed to feedback loops that ceased to affect global trends in the 1970s, and thus hyperbolic growth should not be expected in the future.[107][108]

In The Progress of Computing, William Nordhaus argued that, prior to 1940, computers followed the much slower growth of a traditional industrial economy, thus rejecting extrapolations of Moore's law to 19th-century computers. Schmidhuber (2006) suggests differences in memory of recent and distant events create an illusion of accelerating change, and that such phenomena may be responsible for past apocalyptic predictions.

Andrew Kennedy, in his 2006 paper for the British Interplanetary Society discussing change and the growth in space travel velocities,[109] stated that although long-term overall growth is inevitable, it is small, embodying both ups and downs, and noted, "New technologies follow known laws of power use and information spread and are obliged to connect with what already exists. Remarkable theoretical discoveries, if they end up being used at all, play their part in maintaining the growth rate: they do not make its plotted curve... redundant." He stated that exponential growth is no predictor in itself, and illustrated this with examples such as quantum theory. The quantum was conceived in 1900, and quantum theory was in existence and accepted approximately 25 years later. However, it took over 40 years for Richard Feynman and others to produce meaningful numbers from the theory. Bethe understood nuclear fusion in 1935, but 75 years later fusion reactors are still only used in experimental settings. Similarly, quantum entanglement was understood in 1935 but not at the point of being used in practice until the 21st century.

A study of the number of patents shows that human creativity does not show accelerating returns, but in fact, as suggested by Joseph Tainter in his The Collapse of Complex Societies,[110] a law of diminishing returns. The number of patents per thousand peaked in the period from 1850 to 1900, and has been declining since.[104] The growth of complexity eventually becomes self-limiting, and leads to a widespread "general systems collapse".

Jaron Lanier refutes the idea that the Singularity is inevitable. He states: "I do not think the technology is creating itself. It's not an anonymous process." He goes on to assert: "The reason to believe in human agency over technological determinism is that you can then have an economy where people earn their own way and invent their own lives. If you structure a society on not emphasizing individual human agency, it's the same thing operationally as denying people clout, dignity and self-determination ... To embrace [the idea of the Singularity] would be a celebration of bad taste and bad politics."[111]

In addition to general criticisms of the singularity concept, several critics have raised issues with Kurzweil's iconic chart. One line of criticism is that a log-log chart of this nature is inherently biased toward a straight-line result. Others identify selection bias in the points that Kurzweil chooses to use.......

Technological singularity - Wikipedia, the free encyclopedia

But perhaps we have already lost control of our societies, of our technologies, of ourselves.
My question is: have we given that control to God, to the Machine, or to the Devil.

The Singularity: A Crucial Phase in Divine Self-Actualization? | Zimmerman | Cosmos and History: The

The Singularity:
A Crucial Phase in
Divine Self-Actualization?

Michael E. Zimmerman

Abstract: Ray Kurzweil and others have posited that the confluence of nanotechnology, artificial intelligence, robotics, and genetic engineering will soon produce posthuman beings that will far surpass us in power and intelligence. Just as black holes constitute a “singularity” from which no information can escape, posthumans will constitute a “singularity:” whose aims and capacities lie beyond our ken. I argue that technological posthumanists, whether wittingly or unwittingly, draw upon the long-standing Christian discourse of “theosis,” according to which humans are capable of being God or god-like. From St. Paul and Luther to Hegel and Kurzweil, the idea of human self-deification plays a prominent role. Hegel in particular emphasizes that God becomes wholly actualized only in the process by which humanity achieves absolute consciousness. Kurzweil agrees that God becomes fully actual only through historical processes that illuminate and thus transform the entire universe. The difference is that for Kurzweil and many other posthumanists, our offspring—the posthumans—will carry out this extraordinary process. What will happen to Home sapiens in the meantime is a daunting question.
The Singularity: A Crucial Phase in Divine Self-Actualization? | Zimmerman | Cosmos and History: The Journal of Natural and Social Philosophy

Not helpful for my purposes, but interesting.